The official implementation of the paper Distilled Pooling Transformer Encoder for Efficient Realistic Image Dehazing.
Authors: Le-Anh Tran, Dong-Chul Park
Journal: Neural Computing and Applications (Springer), 2024
- Create environment & install required packages
conda env create -f environment.yaml
conda activate dpteenv2
- Download pre-trained weights from Hugging Face
- Prepare test data
- Run test
python dehaze.py
- Evaluate PSNR & SSIM
python eval_psnr_ssim.py
- Create environment & install required packages
- Prepare dataset (a parent directory containing two sub-folders 'A' and 'B' like below):
.../path/to/data
| A (containing hazy images)
| B (containing clean images)
*** Note: a pair of hazy-clean images must have the same name
- Configure training parameters in train.py
- Train command
python train.py
Please cite our paper if you use the data in this repo.
@article{tran2024distilled,
title={Distilled pooling transformer encoder for efficient realistic image dehazing},
author={Tran, Le-Anh and Park, Dong-Chul},
journal={Neural Computing and Applications},
pages={1--19},
year={2024},
publisher={Springer}
}
Have fun.
LA Tran