Skip to content

Distilled Pooling Transformer Encoder for Image Dehazing

License

Notifications You must be signed in to change notification settings

tranleanh/dpte-net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DPTE-Net: Distilled Pooling Transformer Encoder for Efficient Realistic Image Dehazing

Weights Preprint Journal

The official implementation of the paper Distilled Pooling Transformer Encoder for Efficient Realistic Image Dehazing.

Authors: Le-Anh Tran, Dong-Chul Park

Journal: Neural Computing and Applications (Springer), 2024

Introduction

Framework diagram

Test

  • Create environment & install required packages
conda env create -f environment.yaml
conda activate dpteenv2
  • Download pre-trained weights from Hugging Face
  • Prepare test data
  • Run test
python dehaze.py
  • Evaluate PSNR & SSIM
python eval_psnr_ssim.py

Train

  • Create environment & install required packages
  • Prepare dataset (a parent directory containing two sub-folders 'A' and 'B' like below):
.../path/to/data
            | A (containing hazy images)
            | B (containing clean images)
*** Note: a pair of hazy-clean images must have the same name
  • Configure training parameters in train.py
  • Train command
python train.py

Citation

Please cite our paper if you use the data in this repo.

@article{tran2024distilled,
  title={Distilled pooling transformer encoder for efficient realistic image dehazing},
  author={Tran, Le-Anh and Park, Dong-Chul},
  journal={Neural Computing and Applications},
  pages={1--19},
  year={2024},
  publisher={Springer}
}

Have fun.

LA Tran

About

Distilled Pooling Transformer Encoder for Image Dehazing

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages