Cats vs Dogs
dataseti tensorflow datasetlari ichida binary classification uchun qo'llaniladigan RGB kanalli turli o'lchamdagi 23262 ta tasvirdan iborat tasvirlar to'plami hisoblanadi. Dataset parametrlari:
- Versiya: 4.0.0
- Manba: https://www.tensorflow.org/datasets/catalog/cats_vs_dogs
- Manba kodi: tfds.image_classification.CatsVsDogs
- Dataset hajmi: 786.68 MB
windows+R
klavishlarini bosing va paydo bo'lgan oynagacmd
buyrug'ini yozing OK tugmachasini bosing.
-
Loyihani quyidagi link yordamida yuklab oling. (Loyiha uchun yaratilgan fayl adresni o'zingiz ko'rsatishingiz mumkin)
C:\> git clone https://github.com/MisterFoziljon/CATS_vs_DOGS.git
-
Loyiha joylashgan faylga kiring.
C:\> cd CATS_vs_DOGS
-
O'zingizdagi pip ni so'nggi versiyasiga yangilang.
C:\CATS_vs_DOGS> python -m pip install --upgrade pip
-
virtual environment yaratish uchun virtualenv modulini o'rnating.
C:\CATS_vs_DOGS> python -m pip install --user virtualenv
-
Yangi environment yaratish uchun unga nom bering.
C:\CATS_vs_DOGS> python -m venv sizning_env
-
Virtual environmentni ishga tushiring(aktivlashtiring).
C:\CATS_vs_DOGS> sizning_env\Scripts\activate.bat
-
Virtual environment ichiga loyiha ishlashi uchun kerakli bo'lgan modullarni o'rnating (requirements.txt faylining ichida barchasi mavjud).
(sizning_env) C:\CATS_vs_DOGS> pip install -r requirements.txt
(sizning_env) C:\CATS_vs_DOGS> jupyter notebook
Cats vs Dogs.ipynb
ni ishga tushiring.- Usbu notebookda Tensorflow.org saytidagi cats_vs_dogs datasetini o'qib olish, uni train va test datalariga ajratish, datalarni size va shape larini train uchun moslash hamda normallashtirish ko'rsatilgan.
- Dataset yordamida Convolutional Neural Network ishlab chiqilgan va u yordamida model train va evaluate qilingan. Model fayl ko'rinishida saqlanadi.
- Notebook yordamida saqlangan modelni load qilish va yangi test qilish datalari yordamida bashorat qilish (predict) ko'rsatib o'tilgan.
- Modelni yuklab olish
(sizning_env) C:\CATS_vs_DOGS> streamlit run streamlit.py
- Proyekt
local server
da ishga tushadi va quyidagicha ko'rinishda bo'ladi:
- Rasm faylini yuklab oling va
Predict
tugmachasini bosing. Model yuklab olingan tasvirni qaysi turkumga tegishli ekanligini bashorat qiladi. Bundan tashqari softmaxdan chiqqan ehtimollik natijasi ham ekranga chiqadi.