This work is partially based on the pipeline built by Torsten Bullmann whose original version can be found here.
It has been developed and extended to address the problem of domain adaptation applied to electron microscopy segmentation.
- Linux or OSX
- Python 2
- CPU or NVIDIA GPU + CUDA CuDNN
- Tensorflow 1.0
- Scikit-learn 0.18
- Scikit-image
- Pandas 0.18.2
- Bokeh 12.6
- Anaconda Python distribution
- PyCharm
- Create environment
daem
and install requirements, see instructions. Make sure this environment is activated. - Clone this repository
git clone https://github.com/MarvinLavechin/daem.git
- Clone other repositories used for computation and visualization if not yet installed
git clone https://github.com/MarvinLavechin/imagetranslation-tensorflow
- Symlink repositories
cd daem
ln -s ../imagetranslation-tensorflow/ imagetranslation
- Create directories
mkdir datasets # or symlink; for datasets
mkdir temp # or symlink; for checkpoints, test results
- Download datasets
bash get-datasets.sh