Skip to content

Akirato/PERM-GaussianKG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

author
Ubuntu
Nov 24, 2021
84d1208 · Nov 24, 2021

History

3 Commits
Nov 24, 2021
Oct 26, 2021
Oct 26, 2021
Oct 26, 2021
Oct 26, 2021
Nov 24, 2021
Oct 26, 2021
Oct 26, 2021

Repository files navigation

Implementation for the paper:

Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian and Chandan Reddy, NeurIPS 2021.

Requirements

torch==1.2.0
tensorboardX==1.6

Run

To reproduce the results on FB15k-237, DRKG and NELL, the hyperparameters are set in example.sh.

bash run.sh

Arguments:

--do_train : Boolean that indicates if model should be trained
--cuda : Boolean that indicates if cuda should be used
--do_valid : Boolean that indicates if model should use validation
--do_test : Boolean that indicates if model should be tested to log metrics
--data_path : Folder that contains train, test and validation 
--model : Use 2-dimensions or one dimension for the model
-n : Number of negative samples per positive sample
-b : Batch size for training
-d : Dimension of embeddings (should be equal to semantic vector dimensions)
-lr : Learning rate of the model
--max_steps : Max number of epochs
--cpu_num : number of CPUs
--test_batch_size : Batch size for testing
--center_reg : Regularization factor for center updates
--geo : Gaussian embeddings or Vec embeddings
--task : Tasks for training
--stepsforpath : Same as number of epochs
--offset_deepsets : Aggregation methods for offsets
--center_deepsets : Aggregation methods for centers
--print_on_screen : Output should print on screen

Code details

dataloader.py - File to load data for the PERM models
model_gaussian.py - File with the model definition for the PERM model and baselines
main_gaussian.py - File to run the model for different experiments

About

PERM GaussianKG

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published