-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopt.cc
338 lines (285 loc) · 10.7 KB
/
opt.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#include "include/opt.h"
#include "include/tokenizer.h"
static constexpr auto num_layers = 32;
static constexpr auto num_heads = 32;
static constexpr auto hidden_size = 4096;
static constexpr auto MAX_LEN = 512;
std::optional<OPTImpl> OPTImpl::from_pretrained(
std::string_view model_path,
int dev_id) {
OPTImpl ctx;
int status = bm_dev_request(&ctx.handle, dev_id);
if (status != BM_SUCCESS) return std::nullopt;
if (!(ctx.bmrt = bmrt_create(ctx.handle))) return std::nullopt;
printf("Loading model [%s]...\n", model_path.data());
if (!bmrt_load_bmodel(ctx.bmrt, model_path.data())) return std::nullopt;
ctx.name_embed = "embedding";
ctx.name_lm = "lm_head";
ctx.name_splitkv = "splitkv";
for (int i = 0; i < num_layers; i++) {
ctx.name_blocks.push_back("block_" + std::to_string(i));
ctx.name_blocks_cache.push_back("block_cache_" + std::to_string(i));
}
ctx.net_embed = const_cast<bm_net_info_t*>(
bmrt_get_network_info(ctx.bmrt, ctx.name_embed.c_str()));
ctx.net_lm = const_cast<bm_net_info_t*>(
bmrt_get_network_info(ctx.bmrt, ctx.name_lm.c_str()));
ctx.net_blocks.resize(num_layers);
ctx.net_blocks_cache.resize(num_layers);
for (int i = 0; i < num_layers; i++) {
ctx.net_blocks[i] = const_cast<bm_net_info_t*>(
bmrt_get_network_info(ctx.bmrt, ctx.name_blocks[i].c_str()));
ctx.net_blocks_cache[i] =
const_cast<bm_net_info_t*>(bmrt_get_network_info(
ctx.bmrt, ctx.name_blocks_cache[i].c_str()));
}
bmrt_tensor(
&ctx.inputs_embed_512,
ctx.bmrt,
ctx.net_embed->input_dtypes[0],
ctx.net_embed->stages[1].input_shapes[0]);
bmrt_tensor(
&ctx.inputs_pid512,
ctx.bmrt,
ctx.net_embed->input_dtypes[1],
ctx.net_embed->stages[1].input_shapes[1]);
bmrt_tensor(
&ctx.outputs_embed_512,
ctx.bmrt,
ctx.net_embed->output_dtypes[0],
ctx.net_embed->stages[1].output_shapes[0]);
bmrt_tensor(
&ctx.input_token,
ctx.bmrt,
ctx.net_embed->input_dtypes[0],
ctx.net_embed->stages[0].input_shapes[0]);
bmrt_tensor(
&ctx.input_pid,
ctx.bmrt,
ctx.net_embed->input_dtypes[1],
ctx.net_embed->stages[0].input_shapes[1]);
bmrt_tensor(
&ctx.output_hidden_state,
ctx.bmrt,
ctx.net_embed->output_dtypes[0],
ctx.net_embed->stages[0].output_shapes[0]);
bmrt_tensor(
&ctx.current_k,
ctx.bmrt,
ctx.net_blocks_cache[0]->output_dtypes[1],
ctx.net_blocks_cache[0]->stages[0].output_shapes[1]);
bmrt_tensor(
&ctx.current_v,
ctx.bmrt,
ctx.net_blocks_cache[0]->output_dtypes[2],
ctx.net_blocks_cache[0]->stages[0].output_shapes[2]);
bmrt_tensor(
&ctx.inputs_attention,
ctx.bmrt,
ctx.net_blocks[0]->input_dtypes[1],
ctx.net_blocks[0]->stages[0].input_shapes[1]);
bmrt_tensor(
&ctx.next_attention,
ctx.bmrt,
ctx.net_blocks_cache[0]->input_dtypes[1],
ctx.net_blocks_cache[0]->stages[0].input_shapes[1]);
ctx.past_key.resize(num_layers);
ctx.past_value.resize(num_layers);
for (int i = 0; i < num_layers; i++) {
bmrt_tensor(
&ctx.past_key[i],
ctx.bmrt,
ctx.net_blocks[0]->output_dtypes[1],
ctx.net_blocks[0]->stages[0].output_shapes[1]);
bmrt_tensor(
&ctx.past_value[i],
ctx.bmrt,
ctx.net_blocks[0]->output_dtypes[1],
ctx.net_blocks[0]->stages[0].output_shapes[2]);
}
bmrt_tensor(
&ctx.inputs_lm,
ctx.bmrt,
ctx.net_lm->input_dtypes[0],
ctx.net_lm->stages[0].input_shapes[0]);
bmrt_tensor(
&ctx.outputs_lm,
ctx.bmrt,
ctx.net_lm->output_dtypes[0],
ctx.net_lm->stages[0].output_shapes[0]);
return ctx;
}
int OPTImpl::forward_first(const std::vector<int>& ids) {
token_length = ids.size();
auto attention_mask = std::make_unique<float[]>(MAX_LEN * MAX_LEN);
auto position_id = std::make_unique<int[]>(MAX_LEN);
for (int i = 0; i < MAX_LEN; i++) {
for (int j = i + 1; j < MAX_LEN; j++)
attention_mask[j + i * MAX_LEN] = -1000.0;
if (i < token_length) position_id[i] = i;
}
bm_memcpy_s2d(handle, inputs_embed_512.device_mem, (void*)ids.data());
bm_memcpy_s2d(handle, inputs_pid512.device_mem, (void*)position_id.get());
bm_tensor_t inputs_block[] = {inputs_embed_512, inputs_pid512};
bm_tensor_t output_block[] = {outputs_embed_512};
bmrt_launch_tensor_ex(
bmrt,
name_embed.c_str(),
inputs_block,
2,
output_block,
1,
true,
false);
bm_memcpy_s2d(handle, inputs_attention.device_mem, attention_mask.get());
bm_thread_sync(handle);
bm_tensor_t hidden_state;
bmrt_tensor_with_device(
&hidden_state,
outputs_embed_512.device_mem,
outputs_embed_512.dtype,
net_blocks[0]->stages[0].input_shapes[0]);
for (int i = 0; i < num_layers; i++) {
bm_tensor_t inputs_block1[] = {hidden_state, inputs_attention};
bm_tensor_t outputs_block1[] = {
hidden_state, past_key[i], past_value[i]};
bmrt_launch_tensor_ex(
bmrt,
name_blocks[i].c_str(),
inputs_block1,
2,
outputs_block1,
3,
true,
false);
bm_thread_sync(handle);
move2end(past_key[i]);
move2end(past_value[i]);
}
auto bytes = hidden_state.device_mem.size / MAX_LEN;
bm_memcpy_d2d(
handle,
inputs_lm.device_mem,
0,
hidden_state.device_mem,
(token_length - 1) * bytes,
bytes);
bmrt_launch_tensor_ex(
bmrt, name_lm.c_str(), &inputs_lm, 1, &outputs_lm, 1, true, false);
bm_thread_sync(handle);
token_length++;
int token = 0;
bm_memcpy_d2s(handle, (void*)&token, outputs_lm.device_mem);
return token;
}
void OPTImpl::move2end(const bm_tensor_t& cache) {
auto const total_size = bm_mem_get_device_size(cache.device_mem);
auto bytes = total_size / MAX_LEN;
auto const real_size = token_length * bytes;
auto const diff_size = (total_size - real_size) / num_heads;
auto buffer = std::make_unique<uint8_t[]>(total_size + diff_size);
bm_memcpy_d2s(handle, buffer.get() + diff_size, cache.device_mem);
bm_memcpy_s2d(handle, cache.device_mem, buffer.get());
}
int OPTImpl::forward_next() {
int position_id = token_length;
bm_memcpy_s2d(handle, input_pid.device_mem, &position_id);
bm_tensor_t last_token;
bmrt_tensor_with_device(
&last_token,
outputs_lm.device_mem,
outputs_lm.dtype,
net_embed->stages[0].input_shapes[0]);
bm_tensor_t input_tensors[] = {last_token, input_pid};
bmrt_launch_tensor_ex(
bmrt,
name_embed.c_str(),
input_tensors,
2,
&output_hidden_state,
1,
true,
false);
auto attention_mask = std::make_unique<float[]>(1 + MAX_LEN);
for (int i = 0; i < MAX_LEN - token_length + 1; i++)
attention_mask[i] = -1000;
bm_thread_sync(handle);
bm_memcpy_s2d(handle, next_attention.device_mem, attention_mask.get());
bm_tensor_t inputs_embed;
bmrt_tensor_with_device(
&inputs_embed,
output_hidden_state.device_mem,
output_hidden_state.dtype,
net_blocks_cache[0]->stages[0].input_shapes[0]);
for (int i = 0; i < num_layers; i++) {
bm_tensor_t inputs_block[] = {
inputs_embed, next_attention, past_key[i], past_value[i]};
bm_tensor_t output_block[] = {inputs_embed, current_k, current_v};
bmrt_launch_tensor_ex(
bmrt,
name_blocks_cache[i].c_str(),
inputs_block,
4,
output_block,
3,
true,
false);
bm_tensor_t block1[] = {current_k, current_v};
bm_tensor_t block2[] = {past_key[i], past_value[i]};
bmrt_launch_tensor_ex(
bmrt, name_splitkv.c_str(), block1, 2, block2, 2, true, false);
bm_thread_sync(handle);
}
bm_tensor_t lm_input;
bmrt_tensor_with_device(
&lm_input,
output_hidden_state.device_mem,
output_hidden_state.dtype,
net_lm->stages[0].input_shapes[0]);
bm_tensor_t input[] = {lm_input};
bm_tensor_t output[] = {outputs_lm};
bmrt_launch_tensor_ex(
bmrt, name_lm.c_str(), input, 1, output, 1, true, false);
token_length++;
int token = 0;
bm_memcpy_d2s(handle, &token, outputs_lm.device_mem);
bm_thread_sync(handle);
return token;
}
std::optional<OPTModel> OPTModel::from_pretrained(
std::string_view model_path,
int dev_id) {
auto tokenizer = GPT2Tokenizer::from_pretrained(model_path);
if (!tokenizer) return std::nullopt;
auto ctx = OPTImpl::from_pretrained(model_path, dev_id);
if (!ctx) return std::nullopt;
OPTModel model;
model.tokenizer = tokenizer.value();
model.impl = ctx.value();
return model;
}
std::vector<int> OPTModel::encode(std::string_view input) {
auto ids = tokenizer.encode(input);
std::vector<int> result(1 + ids.size());
result[0] = 2;
memcpy(&result[1], ids.data(), sizeof(int) * ids.size());
return result;
}
void OPTModel::stream_generate(
const std::vector<int>& ids,
int max_new_length) {
int cnt = 1;
auto start_time = std::chrono::high_resolution_clock::now();
auto token = impl.forward_first(ids);
while (++cnt < max_new_length) {
std::cout << tokenizer.decode(std::vector<int>{token}, true)
<< std::flush;
token = impl.forward_next();
}
auto end_time = std::chrono::high_resolution_clock::now();
auto time_count = std::chrono::duration_cast<std::chrono::milliseconds>(
end_time - start_time)
.count();
std::cout << "\n\nTime: " << time_count << " ms Token: " << cnt
<< " Ratio: " << cnt * 1000.0 / time_count << " Tokens/sec\n";
}