|
| 1 | +import gym |
| 2 | +import universe |
| 3 | +import random |
| 4 | + |
| 5 | + |
| 6 | +#reinforcement learning step |
| 7 | +def determine_turn(turn, observation_n, j, total_sum, prev_total_sum, reward_n): |
| 8 | + #for every 15 iterations, sum the total observations, and take the average |
| 9 | + #if lower than 0, change the direction |
| 10 | + #if we go 15+ iterations and get a reward each step, we're doing something right |
| 11 | + #thats when we turn |
| 12 | + if(j >= 15): |
| 13 | + if(total_sum/ j ) == 0: |
| 14 | + turn = True |
| 15 | + else: |
| 16 | + turn = False |
| 17 | + |
| 18 | + #reset vars |
| 19 | + total_sum = 0 |
| 20 | + j = 0 |
| 21 | + prev_total_sum = total_sum |
| 22 | + total_sum = 0 |
| 23 | + |
| 24 | + else: |
| 25 | + turn = False |
| 26 | + if(observation_n != None): |
| 27 | + #increment counter and reward sum |
| 28 | + j+=1 |
| 29 | + total_sum += reward_n |
| 30 | + return(turn, j, total_sum, prev_total_sum) |
| 31 | + |
| 32 | + |
| 33 | + |
| 34 | + |
| 35 | +def main(): |
| 36 | + |
| 37 | + #init environment |
| 38 | + env = gym.make('flashgames.DuskDrive-v0') |
| 39 | + observation_n = env.reset() |
| 40 | + |
| 41 | + #init variables |
| 42 | + # num of game iterations |
| 43 | + n = 0 |
| 44 | + j = 0 |
| 45 | + #sum of observations |
| 46 | + total_sum = 0 |
| 47 | + prev_total_sum = 0 |
| 48 | + turn = False |
| 49 | + |
| 50 | + #define our turns or keyboard actions |
| 51 | + left = [('KeyEvent', 'ArrowUp', True) ,('KeyEvent', 'ArrowLeft', True), ('KeyEvent', 'ArrowRight', False)] |
| 52 | + right = [('KeyEvent', 'ArrowUp', True) ,('KeyEvent', 'ArrowLeft', False), ('KeyEvent', 'ArrowRight', True)] |
| 53 | + Forward = [('KeyEvent', 'ArrowUp', True) ,('KeyEvent', 'ArrowLeft', False), ('KeyEvent', 'ArrowRight', False)] |
| 54 | + |
| 55 | + |
| 56 | + #main logic |
| 57 | + while True: |
| 58 | + #increment a counter for number of iterations |
| 59 | + n+=1 |
| 60 | + |
| 61 | + #if at least one iteration is made, check if turn is needed |
| 62 | + if(n > 1): |
| 63 | + #if at least one iteration, check if a turn |
| 64 | + if(observation_n[0] != None): |
| 65 | + #store the reward in the previous score |
| 66 | + prev_score = reward_n[0] |
| 67 | + |
| 68 | + #should we turn? |
| 69 | + if(turn): |
| 70 | + #pick a random event |
| 71 | + #where to turn? |
| 72 | + event = random.choice([left,right]) |
| 73 | + #perform an action |
| 74 | + action_n = [event for ob in observation_n] |
| 75 | + #set turn to false |
| 76 | + turn = False |
| 77 | + |
| 78 | + elif(~turn): |
| 79 | + #if no turn is needed, go straight |
| 80 | + action_n = [Forward for ob in observation_n] |
| 81 | + |
| 82 | + |
| 83 | + #if there is an obseravtion, game has started, check if turn needed |
| 84 | + if(observation_n[0] != None): |
| 85 | + turn, j, total_sum, prev_total_sum = determine_turn(turn, observation_n[0], j, total_sum, prev_total_sum, reward_n[0]) |
| 86 | + |
| 87 | + #save new variables for each iteration |
| 88 | + observation_n, reward_n, done_n, info = env.step(action_n) |
| 89 | + |
| 90 | + env.render() |
| 91 | + |
| 92 | +if __name__ == '__main__': |
| 93 | + main() |
0 commit comments