-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvideo_script.py
348 lines (266 loc) · 13.4 KB
/
video_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import math
import numpy as np
import time
import torch, torchvision
import torch.nn.functional as F
from omegaconf import OmegaConf
from PIL import Image
import cv2
from torchvision import transforms
import os, json, sys
import matplotlib.pyplot as plt
import glob, ipdb
from tqdm import tqdm
import yaml
import pandas as pd
import importlib
from datetime import datetime
import pickle
import hashlib
from os.path import join
import warnings
from dataloader.data_helpers import *
from dataloader.depth_helpers import *
from dataloader.util_3dphoto import unproject_depth, render_view, render_multiviews
from accelerate import Accelerator
from torch.utils.data import DataLoader
from ldm.util import instantiate_from_config
from ldm.logger import ImageLogger
from accelerate.utils import set_seed
from dataloader.evalhelpers import *
set_seed(23)
torch.backends.cudnn.benchmark = True
def setup_model():
expdir = args.exp_dir
config_file = yaml.safe_load(open( join(expdir, 'config.yaml') ))
train_configs = config_file.get('training', {})
img_logger = ImageLogger(log_directory=expdir, log_images_kwargs=train_configs['log_images_kwargs'])
model = instantiate_from_config(config_file['model']).eval()
accelerator = Accelerator()
resume_folder = 'latest' if args.resume == -1 else f'iter_{args.resume}'
args.resume = int(open(os.path.join(args.exp_dir, 'latest/iteration.txt'), "r").read()) if args.resume == -1 else args.resume
print("loading from iteration {}".format(args.resume))
if args.ckpt_file:
old_state = torch.load(join(args.exp_dir, resume_folder, 'zeronvs.ckpt'), map_location="cpu")["state_dict"]
model.load_state_dict(old_state)
model = accelerator.prepare( model )
if not args.ckpt_file:
accelerator.load_state(join(args.exp_dir, resume_folder))
return model, img_logger
def setup_paths():
savepath = args.savepath
os.makedirs(savepath, exist_ok=True)
orbitpath = join(savepath, 'orbit')
spiralpath = join(savepath, 'spiral')
os.makedirs(orbitpath, exist_ok=True)
os.makedirs(spiralpath, exist_ok=True)
def setup_scene_and_poses():
# load img as 256x256
inputimg = Image.open(args.inputimg)
refimg = resize_with_padding(inputimg, target_size=256, returnpil=True)
refimg_nopad = resize_with_padding(inputimg, target_size=256, return_unpadded=True, returnpil=True)
refimg_nopad.save(join(args.savepath, 'reference.png'))
refimg.save(join(args.savepath, 'reference_padded.png'))
refimg_nopad = np.array(refimg_nopad)
refimg = np.array(refimg)/ 255. # 0-1 for unproject_depth input
# get depth
inputimg = np.array(inputimg)/ 255. # use original resolution for depth estimation, but resize depth to refimg shape
depth_model, dtransform = load_depth_model()
h, w = refimg_nopad.shape[:2]
img = dtransform({'image': inputimg})['image']
img = torch.from_numpy(img).unsqueeze(0).cuda()
with torch.no_grad():
est_disparity = depth_model(img).cpu()
est_disparity = F.interpolate(est_disparity[None], (h, w), mode='bicubic', align_corners=False)[0, 0] # bicubic
depthmap = invert_depth(est_disparity)
# setup camera
fx = fy = 80
sensor_diagonal = math.sqrt(w**2 + h**2)
fov = 2 * math.atan(sensor_diagonal / (2 * fx))
fov = torch.tensor(fov)
ext1 = np.eye(4)
ext2 = ext1.copy()
K = np.eye(3)
K[0, 0], K[1, 1] = fx, fy
K[0, 2], K[1, 2] = w/2, h/2 # cx,cy is w/2,h/2, respectively
depthmap = depthmap.numpy()
scales = np.quantile( depthmap.reshape(-1), q=0.2 )
depthmap = depthmap / scales
depthmap = depthmap.clip(0,100)
# get mesh
plypath = join(args.savepath, 'mesh.ply')
mesh = unproject_depth(plypath, refimg_nopad/255., depthmap, K, np.linalg.inv(ext1), scale_factor=1.0, add_faces=True, prune_edge_faces=True) # takes C2W
# save warps
def savewarps(warps):
warppath = join(args.savepath, 'xtrans/warped')
os.makedirs(warppath, exist_ok=True)
warpedimgs = [(w*255).astype(np.uint8) for w in warps]
pilframes = [Image.fromarray(f) for f in warpedimgs]
pilframes[0].save(join(warppath,f'warps.gif'), save_all=True, append_images=pilframes[1:], loop=0, duration=100)
# setup poses
# orbit poses
orbitposes = get_orbit_poses()
orbitwarps, _ = render_multiviews(h, w, K, orbitposes, mesh)
orbit_rel_poses = []
for ext2 in orbitposes: # change this!!!
refpose = np.linalg.inv(ext1) # convert to c2w
rel_pose = np.linalg.inv(refpose) @ ext2 # 4x4
fov_enc = torch.stack( [fov, torch.sin(fov), torch.cos(fov)] )
rel_pose = torch.tensor(rel_pose.reshape((16)))
rel_pose = torch.cat([rel_pose, fov_enc]).float()
orbit_rel_poses.append(rel_pose)
# spiral poses
spiralposes = get_front_facing_trans(num_frames=20, max_trans=3, z_div=2)
spiralwarps, _ = render_multiviews(h, w, K, spiralposes, mesh)
spiral_rel_poses = []
for ext2 in spiralposes: # change this!!!
refpose = np.linalg.inv(ext1) # convert to c2w
rel_pose = np.linalg.inv(refpose) @ ext2 # 4x4
fov_enc = torch.stack( [fov, torch.sin(fov), torch.cos(fov)] )
rel_pose = torch.tensor(rel_pose.reshape((16)))
rel_pose = torch.cat([rel_pose, fov_enc]).float()
spiral_rel_poses.append(rel_pose)
#ipdb.set_trace()
return refimg, refimg_nopad, orbitwarps, orbit_rel_poses, spiralwarps, spiral_rel_poses
def save_outputs(refimg, outputs, warps, posetype): # posetype == 'orbit' or 'spiral'
# 1. save grids of 6 imgs per viewpoint
# 2. save grids of multiview imgs (6 grids corresponding to 6 generations per viewpoint, each grid has 5x4 imgs)
# 3. save grids of the warped images
# 4. save gifs
viewgridpath = join(args.savepath, posetype, 'per_view_generations')
os.makedirs(viewgridpath, exist_ok=True)
for i, view in enumerate(outputs):
save_images_as_grid(view, max_per_row=args.batch_size).save(join(viewgridpath, f'{i}.png'))
# save warps
warppath = join(args.savepath, posetype, 'warped')
os.makedirs(warppath, exist_ok=True)
warpedimgs = [(w*255).astype(np.uint8) for w in warps]
for i, w in enumerate(warpedimgs):
Image.fromarray(w).save(join(warppath, f'{i}.png'))
save_images_as_grid(warpedimgs, max_per_row=5).save(join(warppath, f'warpgrid.png'))
pilframes = [Image.fromarray(f) for f in warpedimgs]
pilframes[0].save(join(warppath,f'warps.gif'), save_all=True, append_images=pilframes[1:], loop=0, duration=100)
# saves batchsize number of videos
grid5x4path = join(args.savepath, posetype, 'videos')
os.makedirs(grid5x4path, exist_ok=True)
# from each view, pick the most consistent one by calculating MSE between original image mask and new image mask
best_frames = []
for i in range(len(outputs)):
frames_sameviews = outputs[i]
warpimg = warpedimgs[i]
nonzeromask = np.any(warpimg != 0, axis=-1)
refpixels = warpimg[nonzeromask]
mse = []
for f in frames_sameviews:
if f.shape[:2] != refimg.shape[:2]:
f = np.array(Image.fromarray(f).resize((refimg.shape[1], refimg.shape[0])))
f = f[nonzeromask]
mse.append(np.mean((f-refpixels)**2))
bestidx = np.argmin(mse)
best_frames.append(frames_sameviews[bestidx])
save_images_as_grid(best_frames, max_per_row=5).save(join(grid5x4path, f'best.png'))
pilframes = [Image.fromarray(f) for f in best_frames]
pilframes[0].save(join(grid5x4path,f'best.gif'), save_all=True, append_images=pilframes[1:], loop=0, duration=100)
def main():
if not args.debug:
model, img_logger = setup_model()
setup_paths()
refimg, refimg_nopad, orbitwarps, orbit_rel_poses, spiralwarps, spiral_rel_poses = setup_scene_and_poses()
h,w = refimg_nopad.shape[:2]
shortside = min(h,w)
diff = math.ceil((256-shortside)/2) # round up to avoid padding
end = 256-diff
batchsize = args.batch_size
refimg = resize_with_padding(Image.fromarray((refimg*255).astype(np.uint8)), target_size=256)/127.5-1
outputs = []
# orbit poses
for i in range(0, len(orbit_rel_poses)):
warpedimg = (orbitwarps[i]*255).astype(np.uint8)
lwarp = resize_with_padding(Image.fromarray(warpedimg), target_size=32)/127.5-1
highwarp = torch.tensor(resize_with_padding(Image.fromarray(warpedimg), target_size=256)/127.5-1).permute(2,0,1).unsqueeze(0).repeat(batchsize,1,1,1)
rel_pose = orbit_rel_poses[i].unsqueeze(0).repeat(batchsize,1)
if i==0:
newdataloader = {}
dataloader = dict(image_target=[np.zeros((256,256,3))-1.0], image_ref=[refimg], warped_depth=[lwarp], rel_pose=rel_pose) # txt=[""*batchsize],
if args.zeronvs:
del dataloader['warped_depth']
if args.warponly:
del dataloader['rel_pose']
for k in dataloader.keys():
if k not in ['rel_pose'] :
dataloader[k] = torch.tensor(dataloader[k][0]).float().unsqueeze(0).repeat(batchsize,1,1,1)
# concatenate each key to newdataloader if exists, else set first value
for k in dataloader.keys():
if k in newdataloader:
newdataloader[k] = torch.cat([newdataloader[k], dataloader[k]])
else:
newdataloader[k] = dataloader[k]
#print(i, dataloader['rel_pose'].shape, newdataloader['rel_pose'].shape)
if (i%args.repeat==0 and i!=0) or i==len(orbit_rel_poses)-1:
out = img_logger.log_img(model, newdataloader, args.resume, split='test', foldername='360', returngrid='train', warpeddepth=highwarp, has_target=False, onlyretimg=True)
npout = ((out.permute(0,2,3,1).cpu().numpy()+1)*127.5).astype(np.uint8)
if w<h:
cropped = npout[:,:,diff:end,...] # if h larger, then padding was added to width, so crop width
else:
cropped = npout[:,diff:end,...]
# append to outputs every batchsize multiple index
for j in range(0, len(cropped), batchsize):
outputs.append(cropped[j:j+batchsize])
newdataloader = {}
save_outputs(refimg_nopad, outputs, orbitwarps, 'orbit')
# spiral poses
outputs = []
for i in range(0, len(spiral_rel_poses)):
warpedimg = (spiralwarps[i]*255).astype(np.uint8)
lwarp = resize_with_padding(Image.fromarray(warpedimg), target_size=32)/127.5-1
highwarp = torch.tensor(resize_with_padding(Image.fromarray(warpedimg), target_size=256)/127.5-1).permute(2,0,1).unsqueeze(0).repeat(batchsize,1,1,1)
rel_pose = spiral_rel_poses[i].unsqueeze(0).repeat(batchsize,1)
if i==0:
newdataloader = {}
dataloader = dict(image_target=[np.zeros((256,256,3))-1.0], image_ref=[refimg], warped_depth=[lwarp], rel_pose=rel_pose)
if args.zeronvs:
del dataloader['warped_depth']
if args.warponly:
del dataloader['rel_pose']
for k in dataloader.keys():
if k not in ['rel_pose'] :
dataloader[k] = torch.tensor(dataloader[k][0]).float().unsqueeze(0).repeat(batchsize,1,1,1)
for k in dataloader.keys():
if k in newdataloader:
newdataloader[k] = torch.cat([newdataloader[k], dataloader[k]])
else:
newdataloader[k] = dataloader[k]
if (i%args.repeat==0 and i!=0) or i==len(spiral_rel_poses)-1:
out = img_logger.log_img(model, newdataloader, args.resume, split='test', foldername='360', returngrid='train', warpeddepth=highwarp, has_target=False, onlyretimg=True)
npout = ((out.permute(0,2,3,1).cpu().numpy()+1)*127.5).astype(np.uint8)
if w<h:
cropped = npout[:,:,diff:end,...] # if h larger, then padding was added to width, so crop width
else:
cropped = npout[:,diff:end,...]
# append to outputs every batchsize multiple index
for j in range(0, len(cropped), batchsize):
outputs.append(cropped[j:j+batchsize])
newdataloader = {}
save_outputs(refimg_nopad, outputs, spiralwarps, 'spiral')
if __name__ == '__main__':
import argparse
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument(
"--exp_dir", "-e", required=True,
help="Directory for logging. Should include 'specs.yaml'",
)
arg_parser.add_argument(
"--resume", "-r", required=True, type=int,
help="continue from previous saved logs, integer value",
)
arg_parser.add_argument("--debug", "-d", action='store_true')
arg_parser.add_argument("--savepath", "-s", required=True)
arg_parser.add_argument("--inputimg", "-i", required=True)
arg_parser.add_argument("--zeronvs", "-z", action='store_true')
arg_parser.add_argument("--warponly", "-w", action='store_true')
arg_parser.add_argument("--ckpt_file", action='store_true', help='if checkpoint file is .ckpt instead of safetensors')
arg_parser.add_argument("--batch_size", "-b", default=9, type=int, help='effective batch size is batch_size*repeat; lower either if OOM')
arg_parser.add_argument("--repeat", default=10, type=int, help='number of generations for each camera position')
args = arg_parser.parse_args()
print(args.savepath)
main()