-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathdemo.py
201 lines (167 loc) · 6.78 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import argparse
import cv2
import json
import logging
import matplotlib.cm as cm
import numpy as np
import os
import os.path as osp
import time
import torch
import warnings
from collections import defaultdict, OrderedDict
from kornia.geometry.transform import warp_perspective
from pathlib import Path
from tqdm import tqdm
from src.utils.load_model import load_model
from src.utils.metrics import estimate_pose, relative_pose_error, error_auc, symmetric_epipolar_distance_numpy, \
epidist_prec
from src.utils.plotting import dynamic_alpha, error_colormap, make_matching_figure
def save_matching_figure(path, img0, img1, mkpts0, mkpts1, inlier_mask, color, ):
""" Make and save matching figures
"""
inlier_mask = inlier_mask.astype(bool).squeeze()
mkpts0_inliers = mkpts0[inlier_mask]
mkpts1_inliers = mkpts1[inlier_mask]
color = color[inlier_mask]
if inlier_mask is None or len(inlier_mask) == 0:
return
text = [f'Matches:{len(mkpts0_inliers)}']
# make the figure
figure = make_matching_figure(img0, img1, mkpts0_inliers, mkpts1_inliers,
color, text=text, path=path, dpi=150)
def save_matching_figure2(path, img0, img1, mkpts0, mkpts1, inlier_mask, color):
""" Make and save matching figures
"""
mkpts0_inliers = mkpts0
mkpts1_inliers = mkpts1
text = [f'Matches:{len(mkpts0_inliers)}']
# make the figure
figure = make_matching_figure(img0, img1, mkpts0_inliers, mkpts1_inliers,
color, text=text, path=path, dpi=150)
def eval_relapose(
matcher,
pair,
save_figs,
figures_dir=None,
method=None,
):
# Eval on pair
im0 = pair['im0']
im1 = pair['im1']
match_res = matcher(im0, im1)
img0_color = cv2.imread(im0)
img1_color = cv2.imread(im1)
img0_color = cv2.cvtColor(img0_color, cv2.COLOR_BGR2RGB)
img1_color = cv2.cvtColor(img1_color, cv2.COLOR_BGR2RGB)
mkpts0 = match_res['mkpts0']
mkpts1 = match_res['mkpts1']
mconf = match_res['mconf']
if len(mconf) > 0:
conf_min = mconf.min()
conf_max = mconf.max()
mconf = (mconf - conf_min) / (conf_max - conf_min + 1e-5)
color = cm.jet(mconf)
if len(mkpts0) >= 4:
ret_H, inliers = cv2.findHomography(mkpts0, mkpts1, cv2.RANSAC)
else:
inliers = None
ret_H = None
print(f"Number of inliers: {inliers.sum() if inliers is not None else 0}")
if save_figs:
img0_name = f"fig1_{osp.basename(pair['im0']).split('.')[0]}"
img1_name = f"fig2_{osp.basename(pair['im1']).split('.')[0]}"
fig_path = osp.join(figures_dir, f"{img0_name}_{img1_name}_after_ransac_{method}.jpg")
save_matching_figure(path=fig_path,
img0=img0_color,
img1=img1_color,
mkpts0=mkpts0,
mkpts1=mkpts1,
inlier_mask=inliers,
color=color,
)
fig_path = osp.join(figures_dir, f"{img0_name}_{img1_name}_before_ransac_{method}.jpg")
save_matching_figure2(path=fig_path,
img0=img0_color,
img1=img1_color,
mkpts0=mkpts0,
mkpts1=mkpts1,
inlier_mask=inliers,
color=color,
)
if ret_H is not None:
img0_color=cv2.cvtColor(img0_color, cv2.COLOR_RGB2BGR)
im0_tensor = torch.tensor(img0_color, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0) / 255.
ret_H = torch.tensor(ret_H, dtype=torch.float32).unsqueeze(0)
im0_tensor = H_transform(im0_tensor, ret_H)
im0 = im0_tensor.squeeze().permute(1, 2, 0).cpu().numpy() * 255
fig_path = osp.join(figures_dir, f"{img0_name}_after_homography_{method}.jpg")
cv2.imwrite(fig_path, im0)
def H_transform(img2_tensor, homography):
image_shape = img2_tensor.shape[2:]
img2_tensor = warp_perspective(img2_tensor, homography, image_shape, align_corners=True)
return img2_tensor
def test_relative_pose_demo(
method="xoftr",
save_dir=None,
save_figs=False,
args=None
):
# Load pairs
scene_pairs = {'im0': args.fig1, 'im1': args.fig2}
# Load method
# matcher = eval(f"load_{method}")(args)
matcher = load_model(method, args)
# Eval
eval_relapose(
matcher,
scene_pairs,
save_figs=save_figs,
figures_dir=save_dir,
method=method,
)
if __name__ == '__main__':
def add_common_arguments(parser):
parser.add_argument('--exp_name', type=str, default="VisSYN")
parser.add_argument('--fig1', type=str, default="./demo/vis_test.png")
parser.add_argument('--fig2', type=str, default="./demo/depth_test.png")
parser.add_argument('--save_dir', type=str, default="./demo/")
def add_method_arguments(parser, method):
if method == "xoftr":
parser.add_argument('--match_threshold', type=float, default=0.3)
parser.add_argument('--fine_threshold', type=float, default=0.1)
parser.add_argument('--ckpt', type=str, default="./weights/weights_xoftr_640.ckpt")
elif method == "loftr":
parser.add_argument('--ckpt', type=str,
default="./weights/minima_loftr.ckpt")
parser.add_argument('--thr', type=float, default=0.2)
elif method == "sp_lg":
parser.add_argument('--ckpt', type=str,
default="./weights/minima_lightglue.pth")
elif method == "roma":
parser.add_argument('--ckpt2', type=str,
default="large")
parser.add_argument('--ckpt', type=str, default='./weights/minima_roma.pth')
else:
raise ValueError(f"Unknown method: {method}")
add_common_arguments(parser)
parser = argparse.ArgumentParser(description='Benchmark Relative Pose')
parser.add_argument('--method', type=str, required=True,
choices=["xoftr", 'sp_lg', 'loftr', 'roma'],
help="Select the method to use: xoftr, sp_lg, loftr, roma")
args, remaining_args = parser.parse_known_args()
add_method_arguments(parser, args.method)
args = parser.parse_args()
print(args)
save_dir = args.save_dir
save_figs = True
tt = time.time()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
test_relative_pose_demo(
args.method,
save_dir=args.save_dir,
save_figs=save_figs,
args=args
)
print(f"Elapsed time: {time.time() - tt}")